Rat striatal cation shifts reflecting hypoxic-ischemic damage can be predicted by on-line impedance measurements.
نویسندگان
چکیده
We investigated the earliest time at which irreversible damage takes place after hypoxia-ischemia in the Levine preparation of rats. In 60 rats anesthetized with chloral hydrate and maintained at one of three body temperatures, we unilaterally ligated the left common carotid artery and placed electrodes in the striatum to measure impedance (reflecting the extracellular space) during hypoxia, recovery, and/or cardiac arrest. We measured blood gases and pH at regular intervals during hypoxia in 47 rats and assessed blood-brain barrier function with Evans blue and tissue damage using Na+:K+ ratios. Shortly after hypoxia, impedance normalized in 24 rats without brain damage (normal Na+:K+ ratios, 4 hours of recovery). Sustained elevation of striatal impedance during recovery in six rats was related to an elevated Na+:K+ ratio and a disrupted blood-brain barrier. Damage was not obviously related to blood gases, pH, or the net reduction of the extracellular space during hypoxia. Hypothermia in 17 rats prevented impedance changes, and no striatal damage was found. Thus, irreversible brain damage very likely occurs during or very shortly after hypoxia. Persistent reduction of the extracellular space indicates tissue damage and can be used to monitor potential in vivo therapeutic measures.
منابع مشابه
Evaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat
Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...
متن کاملComparison effect of pentobarbital sodium with chloral hydrate anesthesia on post-ischemic damage in an experimental model of focal cerebral ischemia
Introduction: Anesthetic agents, blood pressure, arterial pH and blood gases have found to influence on the pathophysiology of experimental stroke. Despite, there are very few comparative studies about effects of anesthetic agents in animal model of cerebral ischemia. Therefore, in this study, we investigated the effects of chloral hydrate and pentobarbital anesthesia, as comparative study, on...
متن کاملNeuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat
Objective(s): Some histopathological alterations take place in the ischemic regions following brain ischemia. Recent studies have demonstrated some neuroprotective roles of crocin in different models of experimental cerebral ischemia. Here, we investigated the probable neuroprotective effects of crocin on the brain infarction and histopathological changes after transient model of focal cerebral...
متن کاملThe Effect of Sodium Butyrate on Hippocampal Cell Damage and Apoptic Neurons Density in Cerebral Hypoxic-Ischemia Model
Introduction and aim: Histone deacetylase inhibitors (HDACi) have neuroprotective effects on amelioration of cerebral ischemic injuries. This study was investigated the effects of sodium butyrate (SB) as a HDACi hippocampal cell damage and neuronal/dark neuronal density in a rat cerebral hypoxic ischemia (HI) model. Materials and Methods: In this experimental study, 40 male Wistar rats (weight:...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 20 10 شماره
صفحات -
تاریخ انتشار 1989